Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biomed Pharmacother ; 174: 116593, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626521

RESUMO

Degenerative intervertebral disc disease (IVDD) is one of the main spinal surgery, conditions, which markedly increases the incidence of low back pain and deteriorates the patient's quality of life, and it imposes significant social and economic burdens. The molecular pathology of IVDD is highly complex and multilateral however still not ompletely understood. New findings indicate that IVDD is closely associated with inflammation, oxidative stress, cell injury and extracellular matrix metabolismdysregulation. Symptomatic management is the main therapeutic approach adopted for IVDD, but it fails to address the basic pathological changes and the causes of the disease. However, research is still focusing on molecular aspects in terms of gene expression, growth factors and cell signaling pathways in an attempt to identify specific molecular targets for IVDD treatment. The paper summarizes the most recent achievements in molecularunderstanding of the pathogenesis of IVDD and gives evidence-based recommendations for clinical practice.

2.
Biomed Pharmacother ; 172: 116238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308965

RESUMO

Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.


Assuntos
Vesículas Extracelulares , Disco Intervertebral , Células-Tronco Mesenquimais , Hidrogéis/farmacologia , Engenharia Tecidual
3.
J Immunol Res ; 2023: 5532617, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965271

RESUMO

Lung squamous cell carcinoma (LUSC) is associated with poor clinical prognosis and lacks available targeted agents. GPC3 is upregulated in LUSC. Our study aimed to explore the roles of GPC3 in LUSC and the antitumor effects of HLA-A2-restricted GPC3 antigenic peptide-sensitized dendritic cell (DC)-induced cytotoxic T lymphocytes (CTLs) on LUSC. LUSC cells with GPC3 knockdown and overexpression were built using lentivirus packaging, and cell viability, clone formation, apoptosis, cycle, migration, and invasion were determined. Western blotting was used to detect the expression of cell cycle-related proteins and PI3K-AKT pathway-associated proteins. Subsequently, HLA-A2-restricted GPC3 antigenic peptides were predicted and synthesized by bioinformatic databases, and DCs were induced and cultured in vitro. Finally, HLA-A2-restricted GPC3 antigenic peptide-modified DCs were co-cultured with T cells to generate specific CTLs, and the killing effects of different CTLs on LUSC cells were studied. A series of cell function experiments showed that GPC3 overexpression promoted the proliferation, migration, and invasion of LUSC cells, inhibited their apoptosis, increased the number of cells in S phase, and reduced the cells in G2/M phase. GPC3 knockdown downregulated cyclin A, c-Myc, and PI3K, upregulated E2F1, and decreased the pAKT/AKT level. Three HLA-A2-restricted GPC3 antigenic peptides were synthesized, with GPC3522-530 FLAELAYDL and GPC3102-110 FLIIQNAAV antigenic peptide-modified DCs inducing CTL production, and exhibiting strong targeted killing ability in LUSC cells at 80 : 1 multiplicity of infection. GPC3 may advance the onset and progression of LUSC, and GPC3522-530 FLAELAYDL and GPC3102-110 FLIIQNAAV antigenic peptide-loaded DC-induced CTLs have a superior killing ability against LUSC cells.


Assuntos
Carcinoma de Células Escamosas , Linfócitos T Citotóxicos , Humanos , Antígeno HLA-A2/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Peptídeos , Células Dendríticas , Pulmão , Glipicanas/genética
4.
Mol Med Rep ; 28(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37830162

RESUMO

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that, for the Transwell cell migration and invasion assay experiments shown in Fig. 3 on p. 1650, there were several panels showing overlapping sections of data; moreover, certain of the data shown in this Figure were also strikingly similar to data appearing in different form in Fig. 4 in another article written by different authors at a different research institute [Liu J and Duan X: PA­MSHA induces apoptosis and suppresses metastasis by tumor associated macrophages in bladder cancer cells. Cancer Cell Int 17: 76, 2017].  Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 19: 1645­1653, 2019; DOI: 10.3892/mmr.2018.9796].

5.
Sci Adv ; 9(30): eadf8436, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506205

RESUMO

When an ionic crystal dissolves in solvent, the positive and negative ions associated with solvent molecules release from the crystal. However, the existing form, interaction, and dynamics of ions in real solution are poorly understood because of the substantial experimental challenge. We observed the diffusion and aggregation of polyoxometalate (POM) ions in water by using liquid phase transmission electron microscopy. Real-time observation reveals an unexpected local reciprocating hopping motion of the ions in water, which may be caused by the short-range polymerized bridge of water molecules. We find that ion oligomers, existing as highly active clusters, undergo frequent splitting, aggregation, and rearrangement in dilute solution. The formation and dissociation of ion oligomers indicate a weak counterion-mediated interaction. Furthermore, POM ions with tetrahedral geometry show directional interaction compared with spherical ions, which presents structure-dependent dynamics.

6.
Lab Chip ; 23(17): 3768-3777, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37489871

RESUMO

The catalysis reaction mechanism at nano/atomic scale attracted intense attention in the past decades. However, most in situ characterization technologies can only reflect the average information of catalysts, which leads to the inability to characterize the dynamic changes of single nanostructures or active sites under operando conditions, and many micro-nanoscale reaction mechanisms are still unknown. The combination of in situ transmission electron microscopy (TEM) holder system with MEMS chips provides a solution for it, where the design and fabrication of MEMS chips are the key factors. Here, with the aid of finite element simulation, an ultra-stable heating chip was developed, which has an ultra-low thermal drift during temperature heating. Under ambient conditions within TEM, atomic resolution imaging was achieved during the heating process or at high temperature up to 1300 °C. Combined with the developed polymer membrane seal technique and nanofluidic control system, it can realize an adjustable pressure from 0.1 bar to 4 bar gas environment around the sample. By using the developed ultra-low drift gas reaction cells, the nanoparticle's structure evolution at atomic scale was identified during reaction.

7.
Commun Chem ; 6(1): 86, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130956

RESUMO

The structure and functionality of biomacromolecules are often regulated by chemical bonds, however, the regulation process and underlying mechanisms have not been well understood. Here, by using in situ liquid-phase transmission electron microscopy (LP-TEM), we explored the function of disulfide bonds during the self-assembly and structural evolution of sulfhydryl single-stranded DNA (SH-ssDNA). Sulfhydryl groups could induce self-assembly of SH-ssDNA into circular DNA containing disulfide bonds (SS-cirDNA). In addition, the disulfide bond interaction triggered the aggregation of two SS-cirDNA macromolecules along with significant structural changes. This visualization strategy provided structure information at nanometer resolution in real time and space, which could benefit future biomacromolecules research.

8.
Hepatobiliary Pancreat Dis Int ; 22(4): 383-391, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34548224

RESUMO

BACKGROUND: Liver cancer is one of the major causes of cancer-related deaths globally. Cancer cell stemness and chemotherapy resistance contribute to the high mortality. Although evidence indicates that the alpha subunit of protein kinase 2 (CK2α) is involved in several human cancers, its function in liver cancer remains unknown. In the present study, we aimed to elucidate the role of CK2α in liver cancer. METHODS: We examined the role of CK2α regulation in stemness and chemotherapy resistance capacity of liver cancer cells. MTT assays, tumor sphere formation assays, RT-PCR, flow cytometry, Western blotting assay, clonogenicity assay, matrigel invasion assay and bioinformatics were conducted in this study. RESULTS: CK2α expression in the liver cancer tissues was notably upregulated compared with that in the corresponding non-tumorous tissues. The overexpression of CK2α promoted tumor sphere formation, increased the percentage of CD133(+) and side population cells, caused the resistance of liver cancer cells to 5-FU treatment, increased the expression levels of NANOG, OCT4, SOX2, Gli1 and Ptch1, and enhanced the ability of CD133(+) cell clone formation and invasion. Consistently, the downregulation of CK2α had the opposite effects. CK2α silencing inhibited the Hedgehog pathway by reducing the expression of Gli1 and Ptch1. Mechanistically, CK2α regulation on liver cancer cell stemness and chemotherapy resistance was found to be involved in the Hedgehog signaling pathway. CONCLUSIONS: Our study may bring some new insights into the occurrence of liver cancer. Furthermore, these findings suggest that targeting CK2α may be a novel therapeutic strategy for patients with liver cancer.


Assuntos
Proteínas Hedgehog , Neoplasias Hepáticas , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122078, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36371809

RESUMO

Gold ions have high activity and cytotoxicity completely different from elemental gold. It is necessary and critical to develop Au3+ detection tools that are easy to operate, intuitive, inexpensive, and non-destructive testing. Here, we propose a novel two-photon fluorescent probe named DA for detecting Au3+, which is a rare combination of dicoumarin with dimethylthiocarbamate for the first time. Based on the PET mechanism, DA turns-on the fluorescence to yellow-green after specifically binds to Au3+, and the reaction is completed within 5 min. The detection limit is as low as 27.60 nM. Simultaneously, DA achieved qualitative and quantitative detection of Au3+ in environmental water samples, and fluorescence imaging of Au3+ in biological cells.


Assuntos
Nanopartículas Metálicas , Dicumarol , Água , Ouro , Corantes Fluorescentes , Tiocarbamatos
10.
J Oncol ; 2022: 4008113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199801

RESUMO

Background: Lymph node metastasis (LNM) is the main route of metastasis in lung adenocarcinoma (LA), and preoperative prediction of LNM in early LA is key for accurate medical treatment. We aimed to establish a preoperative prediction model of LNM of early LA through clinical data mining to reduce unnecessary lymph node dissection, reduce surgical injury, and shorten the operation time. Methods: We retrospectively collected imaging data and clinical features of 1121 patients with early LA who underwent video-assisted thoracic surgery at the First Hospital of China Medical University from 2004 to 2021. Logistic regression analysis was used to select variables and establish the preoperative diagnosis model using random forest classifier (RFC). The prediction results from the test set were used to evaluate the prediction performance of the model. Results: Combining the results of logistic analysis and practical clinical application experience, nine clinical features were included. In the random forest classifier model, when the number of nodes was three and the n-tree value is 500, we obtained the best prediction model (accuracy = 0.9769), with a positive prediction rate of 90% and a negative prediction rate of 98.69%. Conclusion: We established a preoperative prediction model for LNM of early LA using a machine learning random forest method combined with clinical and imaging features. More excellent predictors may be obtained by refining imaging features.

11.
J Mater Chem B ; 10(32): 6207-6213, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35920207

RESUMO

The key biological thiol, cysteine (Cys), which can participate in many physiological and pathological processes in the human body, has also been proved to have considerable effects on redox homeostasis and the regulation of cell activity in vivo. A large number of studies have shown that abnormal Cys concentration is inseparable from the occurrence of many diseases. Therefore, it is of considerable research value to develop a method to specifically detect Cys. In this study, a new ratiometric fluorescent probe of two-isophorone fluorophore, TIFC, was proposed to successfully detect intracellular Cys by ratiometric fluorescence signals and the results showed that TIFC has good selectivity and sensitivity. The results of biological imaging experiments also demonstrated that probe TIFC can exhibit a rapid ratiometric response to Cys in vivo and has low cytotoxicity, enabling high biocompatible fluorescence imaging in osteoblasts. Therefore, TIFC has the potential of rapid ratio-response to Cys for the preliminary diagnosis of related diseases.


Assuntos
Cisteína , Corantes Fluorescentes , Cicloexanonas , Humanos , Imagem Óptica
12.
Nano Lett ; 22(17): 6958-6963, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36037446

RESUMO

The kinetics of mass transfer in a stagnant fluid layer next to an interface govern numerous dynamic reactions in diffusional micro/nanopores, such as catalysis, fuel cells, and chemical separation. However, the effect of the interplay between stagnant liquid and flowing fluid on the micro/nanoscopic mass transfer dynamics remains poorly understood. Here, by using liquid cell transmission electron microscopy (TEM), we directly tracked microfluid unit migration at the nanoscale. By tracking the trajectories, an unexpected mass transfer phenomenon in which fluid units in the stagnant liquid layer migrated two orders faster during gas-liquid interface updating was identified. Molecular dynamics (MD) simulations indicated that the chemical potential difference between nanoscale liquid layers led to convective flow, which greatly enhanced mass transfer on the surface. Our study opens up a pathway toward research on mass transfer in the surface liquid layers at high spatial and temporal resolutions.


Assuntos
Nanoporos , Difusão , Cinética , Microfluídica , Microscopia Eletrônica de Transmissão
13.
Nat Commun ; 13(1): 3601, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739085

RESUMO

An understanding of solid-liquid interfaces is of great importance for fundamental research as well as industrial applications. However, it has been very challenging to directly image solid-liquid interfaces with high resolution, thus their structure and properties are often unknown. Here, we report a quasi-liquid phase between metal (In, Sn) nanoparticle surfaces and an aqueous solution observed using liquid cell transmission electron microscopy. Our real-time high-resolution imaging reveals a thin layer of liquid-like materials at the interfaces with the frequent appearance of small In nanoclusters. Such a quasi-liquid phase serves as an intermediate for the mass transport from the metal nanoparticle to the liquid. Density functional theory-molecular dynamics simulations demonstrate that the positive charges of In ions greatly contribute to the stabilization of the quasi-liquid phase on the metal surface.

14.
Breast Care (Basel) ; 17(1): 31-39, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35355703

RESUMO

Objective: The aim of this study was to measure the expression of PD-L1, CD1a (a marker for immature dendritic cells), and CD83 (a marker for mature dendritic cells) and further examine the associations of PD-L1, CD83, and CD1a with overall survival (OS) in triple-negative breast carcinoma patients. Methods: PD-L1, CD1a, and CD83 expression in breast carcinoma tissues and CD83 expression in lymph node tissues were examined by immunohistochemistry and tissue microarray in 159 patients. Patients were classified into the low, medium, and high PD-L1, CD1a, and CD83 levels. Pearson χ2 test was used to analyze the correlations between PD-L1, CD1a, and CD83. The Kaplan-Meier method was used to calculate the OS. Multivariate analysis was used to identify determinants of 3- and 5-year OS. Results: 25.1, 25.8, and 49.1% of the patients had low, medium, and high PD-L1 levels, respectively. PD-L1 levels significantly correlated with CD1a (r = 0.30409, p < 0.001) and CD83 levels (r = 0.6146, p < 0.001) in breast carcinoma tissue, as well as CD83 levels (r = 0.17508, p = 0.027) in lymph node. The median OS was 83 months (range 12-106), and the 3- and 5-year OS rates were 94.97% (95% CI 91.57-98.37) and 86.79% (95% CI 81.53-92.06), respectively. Moreover, patients with high median CD1a levels had a significantly lower 5-year OS rate (75.6%) than those with low median CD1a levels (93.5%, p = 0.038). Conclusion: PD-L1, CD1a, and CD83 are variably expressed in triple-negative breast carcinoma tissues, and PD-L1 expression correlates with CD1a and CD83. Higher CD1a levels correlate with PD-L1 expression and predict worse OS in triple-negative breast carcinoma.

15.
Small Methods ; 5(7): e2001234, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34928001

RESUMO

Liquid phase electron microscopy (TEM) is used to track the formation of In2 O3 ultrathin nanosheet in solution at atomic scale. This observation reveals that the formation of few atomic layer nanosheet goes through a complicated phase transition process from InCl3 . 3H2 O to In(OH)3 and then to In2 O3 . Interestingly, the intermediate InCl3 . 3H2 O nanosheet can grow via either layer by layer or the strain-driven enation growth from precursor solution. Moreover, in situ TEM results and density functional theory (DFT) calculations demonstrate that the oleylamine is responsible for the self-peeling process. These findings can provide atomic-level insight for the understanding of how 2D nanomaterial grows and transforms in solution.

17.
BMC Pulm Med ; 21(1): 199, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112123

RESUMO

BACKGROUND: Glypican 3 (GPC3) is a heparin sulphate proteoglycan whose expression is associated with several malignancies. However, its expression in non-small-cell lung carcinoma (NSCLC) is limited and ambiguous. This study aimed to comprehensively evaluate the expression of GPC3 in NSCLC and develop a risk-score model for predicting the prognosis of NSCLC. METHODS: The gene expression profiles of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were downloaded from the UCSC Xena database. Using the limma package, the differentially expressed genes (DEGs) between different comparison groups were analysed and the differential expression of GPC3 was calculated. A functional enrichment analysis was conducted for GPC3-associated genes using the DAVID tool. For the GPC3-associated genes shared by the four comparison groups, a protein-protein interaction network was built using the Cytoscape software. After conducting a survival analysis and a Cox regression analysis, the genes found to be significantly correlated with prognosis were selected to construct a risk-score model. Besides, the gene and protein levels of GPC3 were examined by quantitative reverse transcriptase-PCR (qRT-PCR) and immunohistochemistry (IHC) in LUSC tissues and paracancer tissues. RESULTS: The differential expression of GPC3 was significant (adjusted P < 0.05) in the NSCLC vs. normal, LUAD vs. normal, LUSC versus normal, and LUAD versus. LUSC comparison groups. GPC3 directly interacted with SERPINA1, MFI2, and FOXM1. Moreover, GPC3 expression was significantly correlated with pathologic N, pathologic T, gender, and tumour stage in LUAD samples. Finally, the risk-score model (involving MFI2, FOXM1, and GPC3) for LUAD and that (involving SERPINA1 and FOXM1) for LUSC were established separately. The qRT-PCR result showed that GPC3 expression was much higher in the LUSC tissues than that in the normal group. The IHC results further showed that GPC3 is highly expressed in LUSC tissues, but low in paracancer tissues. CONCLUSION: The three-gene risk-score model for LUAD and the two-gene risk-score model for LUSC might be valuable in improving the prognosis of these carcinomas.


Assuntos
Adenocarcinoma de Pulmão/genética , Glipicanas/genética , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Transcriptoma
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119438, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461142

RESUMO

It is momentous to exploit rapid, specific and on-site detection methods for mercury ion (Hg2+) in loess, as the severe toxicity of Hg2+ and the fragile ecological environment of Loess Plateau. In this paper, a novel fluorescent probe DC-Hg (Dicoumarin-Hg) was synthesized by 3-hydroxybiscoumarin and phenyl thiochloroformate at room temperature. DC-Hg could exclusively combine with Hg2+ to 'turn-on' yellow fluorescence at 530 nm among various other metal ions. The relationship between the remarkable increase in intensity and concentration of Hg2+ was associated with photoinduced electron transfer (PET), which was founded by Job's plot and 1H NMR. The limit detection of DC-Hg showed to 85.25 nM in aqueous medium, which could be applied to varying situations. For the loess samples, they were only extracted by hand-shake and filtration for quickly complete the treatment operation on site, and the results proved that DC-Hg could satisfactorily detect the Hg2+ in mercury pollution areas.

19.
Biomed Pharmacother ; 124: 109852, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31972357

RESUMO

BACKGROUND: Breast cancer is the most common malignant tumor in women. Due to limited treatment outcome and high rate of metastasis, the prognosis is especially poor for triple-negative breast cancer. It is urgent to discover and develop novel agents for treatment of breast cancer. Herein, we investigated the potential mechanisms of Oleandrin's (a cardiac glycoside) cytotoxic activity against breast cancer cells. METHODS: Cell proliferation was assessed by xCELLigence Real-Time Cell Analyzer (RTCA)-MP system. Apoptotic cells were detected by using Annexin V/PI staining and nuclear fragments observation. The effect of oleandrin on ATP1B3 expression and markers of ER stress were determined by western blot. A primary cell sensitivity assay was performed via a collagen gel droplet-embedded culture drug sensitivity method (CD-DST). RESULTS: Oleandrin suppressed cell proliferation and colony formation in the three breast cancer cell lines but did not affect normal mammary epithelial cells. Additionally, the expression of ATP1B3 was higher in the three breast cancer cell lines compared to MCF10A cells. Treatment with oleandrin increased the number of apoptotic cells and led to nuclear pyknosis, fragmentation, and apoptotic body formation in breast cancer cells. Furthermore, oleandrin treatment increased expression of Bax and Bim but decreased that of Bcl-2. Treatment with oleandrin also upregulated the expression of endoplasmic reticulum stress associated proteins, including eIF2α, ATF4, and CHOP, but not PERK. oleandrin treatment also induced the phosphorylation of PERK and eIF2α. Of note, oleandrin exhibited antitumor effects on patient-derived breast cancer cells under three-dimensional culture conditions. CONCLUSIONS: Taken together, our results suggest that oleandrin induces mitochondrial-mediated apoptosis by activating endoplasmic reticulum stress in breast cancer. Moreover, oleandrin may be an effective strategy for the treatment of breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Cardenolídeos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Idoso , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Células Tumorais Cultivadas
20.
PeerJ ; 7: e7603, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31528507

RESUMO

OBJECTIVES: To map publication trends and explore research hotspots of retinal vein occlusion (RVO) study. METHODS: Based on Web of Science Core Collection (WoSCC), a bibliometric analysis was carried out. The knowledge map was constructed by VOSviewer v.1.6.10 to visualize the annual publication number, the distribution of countries, international collaborations, author productivity, source journals, cited reference and keywords in this field. RESULTS: A total of 2,135 peer-reviewed papers were retrieved on RVO from 2009 to 2018. The United States ranks highest among countries with the most publications and the most active institution was Kyoto University. Noma H contributed the most publications in this field. Retina-The Journal of Retinal and Vitreous Disease was the most prolific journal in RVO research. The top cited references mainly presented anti-VEGF medications on the management of RVO. The keywords formed six clusters: (1) Risk factors and pathogenesis of RVO; (2) Metabolismof RVO; (3) Therapeutic use of corticosteroids on RVO; (4) Diagnostic methodsof RVO; (5) Management of macular edema secondary to RVO (6) Anti-VEGFtreatment of RVO. CONCLUSIONS: The six major research hotspots could provide an insight into RVO research and valuable information for researchers to identify potential collaborators and partner institutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...